Cocos2d.lua 13.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

cc = cc or {}

function cc.clampf(value, min_inclusive, max_inclusive)
    -- body
    local temp = 0
    if min_inclusive > max_inclusive then
        temp = min_inclusive
        min_inclusive =  max_inclusive
        max_inclusive = temp
    end

    if value < min_inclusive then
        return min_inclusive
    elseif value < max_inclusive then
        return value
    else
        return max_inclusive
    end
end

--Point
function cc.p(_x,_y)
    if nil == _y then
         return { x = _x.x, y = _x.y }
    else
         return { x = _x, y = _y }
    end
end

function cc.pAdd(pt1,pt2)
    return {x = pt1.x + pt2.x , y = pt1.y + pt2.y }
end

function cc.pSub(pt1,pt2)
    return {x = pt1.x - pt2.x , y = pt1.y - pt2.y }
end

function cc.pMul(pt1,factor)
    return { x = pt1.x * factor , y = pt1.y * factor }
end

function cc.pMidpoint(pt1,pt2)
    return { x = (pt1.x + pt2.x) / 2.0 , y = ( pt1.y + pt2.y) / 2.0 }
end

function cc.pForAngle(a)
    return { x = math.cos(a), y = math.sin(a) }
end

function cc.pGetLength(pt)
    return math.sqrt( pt.x * pt.x + pt.y * pt.y )
end

function cc.pNormalize(pt)
    local length = cc.pGetLength(pt)
    if 0 == length then
        return { x = 1.0,y = 0.0 }
    end

    return { x = pt.x / length, y = pt.y / length }
end

function cc.pCross(self,other)
    return self.x * other.y - self.y * other.x
end

function cc.pDot(self,other)
    return self.x * other.x + self.y * other.y
end

function cc.pToAngleSelf(self)
    return math.atan2(self.y, self.x)
end

function cc.pGetAngle(self,other)
    local a2 = cc.pNormalize(self)
    local b2 = cc.pNormalize(other)
    local angle = math.atan2(cc.pCross(a2, b2), cc.pDot(a2, b2) )
    if math.abs(angle) < 1.192092896e-7 then
        return 0.0
    end

    return angle
end

function cc.pGetDistance(startP,endP)
    return cc.pGetLength(cc.pSub(startP,endP))
end

function cc.pIsLineIntersect(A, B, C, D, s, t)
    if ((A.x == B.x) and (A.y == B.y)) or ((C.x == D.x) and (C.y == D.y))then
        return false, s, t
    end

    local BAx = B.x - A.x
    local BAy = B.y - A.y
    local DCx = D.x - C.x
    local DCy = D.y - C.y
    local ACx = A.x - C.x
    local ACy = A.y - C.y

    local denom = DCy * BAx - DCx * BAy
    s = DCx * ACy - DCy * ACx
    t = BAx * ACy - BAy * ACx

    if (denom == 0) then
        if (s == 0 or t == 0) then
            return true, s , t
        end

        return false, s, t
    end

    s = s / denom
    t = t / denom

    return true,s,t
end

function cc.pPerp(pt)
    return { x = -pt.y, y = pt.x }
end

function cc.RPerp(pt)
    return { x = pt.y,  y = -pt.x }
end

function cc.pProject(pt1, pt2)
    return { x = pt2.x * (cc.pDot(pt1,pt2) / cc.pDot(pt2,pt2)) , y = pt2.y * (cc.pDot(pt1,pt2) / cc.pDot(pt2,pt2)) }
end

function cc.pRotate(pt1, pt2)
    return { x = pt1.x * pt2.x - pt1.y * pt2.y, y = pt1.x * pt2.y + pt1.y * pt2.x }
end

function cc.pUnrotate(pt1, pt2)
    return { x = pt1.x * pt2.x + pt1.y * pt2.y, pt1.y * pt2.x - pt1.x * pt2.y }
end
--Calculates the square length of pt
function cc.pLengthSQ(pt)
    return cc.pDot(pt,pt)
end
--Calculates the square distance between pt1 and pt2
function cc.pDistanceSQ(pt1,pt2)
    return cc.pLengthSQ(cc.pSub(pt1,pt2))
end

function cc.pGetClampPoint(pt1,pt2,pt3)
    return { x = cc.clampf(pt1.x, pt2.x, pt3.x), y = cc.clampf(pt1.y, pt2.y, pt3.y) }
end

function cc.pFromSize(sz)
    return { x = sz.width, y = sz.height }
end

function cc.pLerp(pt1,pt2,alpha)
    return cc.pAdd(cc.pMul(pt1, 1.0 - alpha), cc.pMul(pt2,alpha) )
end

function cc.pFuzzyEqual(pt1,pt2,variance)
    if (pt1.x - variance <= pt2.x) and (pt2.x <= pt1.x + variance) and (pt1.y - variance <= pt2.y) and (pt2.y <= pt1.y + variance) then
        return true
    else
        return false
    end
end

function cc.pRotateByAngle(pt1, pt2, angle)
    return cc.pAdd(pt2, cc.pRotate( cc.pSub(pt1, pt2),cc.pForAngle(angle)))
end

function cc.pIsSegmentIntersect(pt1,pt2,pt3,pt4)
    local s,t,ret = 0,0,false
    ret,s,t =cc.pIsLineIntersect(pt1, pt2, pt3, pt4,s,t)

    if ret and  s >= 0.0 and s <= 1.0 and t >= 0.0 and t <= 0.0 then
        return true
    end

    return false
end

function cc.pGetIntersectPoint(pt1,pt2,pt3,pt4)
    local s,t, ret = 0,0,false
    ret,s,t = cc.pIsLineIntersect(pt1,pt2,pt3,pt4,s,t)
    if ret then
        return cc.p(pt1.x + s * (pt2.x - pt1.x), pt1.y + s * (pt2.y - pt1.y))
    else
        return cc.p(0,0)
    end
end
--Size
function cc.size( _width,_height )
    return { width = _width, height = _height }
end

--Rect
function cc.rect(_x,_y,_width,_height)
    return { x = _x, y = _y, width = _width, height = _height }
end

function cc.rectEqualToRect(rect1,rect2)
    if ((rect1.x >= rect2.x) or (rect1.y >= rect2.y) or
        ( rect1.x + rect1.width <= rect2.x + rect2.width) or
        ( rect1.y + rect1.height <= rect2.y + rect2.height)) then
        return false
    end

    return true
end

function cc.rectGetMaxX(rect)
    return rect.x + rect.width
end

function cc.rectGetMidX(rect)
    return rect.x + rect.width / 2.0
end

function cc.rectGetMinX(rect)
    return rect.x
end

function cc.rectGetMaxY(rect)
    return rect.y + rect.height
end

function cc.rectGetMidY(rect)
    return rect.y + rect.height / 2.0
end

function cc.rectGetMinY(rect)
    return rect.y
end

function cc.rectContainsPoint( rect, point )
    local ret = false

    if (point.x >= rect.x) and (point.x <= rect.x + rect.width) and
       (point.y >= rect.y) and (point.y <= rect.y + rect.height) then
        ret = true
    end

    return ret
end

function cc.rectIntersectsRect( rect1, rect2 )
    local intersect = not ( rect1.x > rect2.x + rect2.width or
                    rect1.x + rect1.width < rect2.x         or
                    rect1.y > rect2.y + rect2.height        or
                    rect1.y + rect1.height < rect2.y )

    return intersect
end

function cc.rectUnion( rect1, rect2 )
    local rect = cc.rect(0, 0, 0, 0)
    rect.x = math.min(rect1.x, rect2.x)
    rect.y = math.min(rect1.y, rect2.y)
    rect.width = math.max(rect1.x + rect1.width, rect2.x + rect2.width) - rect.x
    rect.height = math.max(rect1.y + rect1.height, rect2.y + rect2.height) - rect.y
    return rect
end

function cc.rectIntersection( rect1, rect2 )
    local intersection = cc.rect(
        math.max(rect1.x, rect2.x),
        math.max(rect1.y, rect2.y),
        0, 0)

    intersection.width = math.min(rect1.x + rect1.width, rect2.x + rect2.width) - intersection.x
    intersection.height = math.min(rect1.y + rect1.height, rect2.y + rect2.height) - intersection.y
    return intersection
end

--Color3B
function cc.c3b( _r,_g,_b )
    return { r = _r, g = _g, b = _b }
end

--Color4B
function cc.c4b( _r,_g,_b,_a )
    return { r = _r, g = _g, b = _b, a = _a }
end

--Color4F
function cc.c4f( _r,_g,_b,_a )
    return { r = _r, g = _g, b = _b, a = _a }
end

local function isFloatColor(c)
    return (c.r <= 1 and c.g <= 1 and c.b <= 1) and (math.ceil(c.r) ~= c.r or math.ceil(c.g) ~= c.g or math.ceil(c.b) ~= c.b)
end

function cc.convertColor(input, typ)
    assert(type(input) == "table" and input.r and input.g and input.b, "cc.convertColor() - invalid input color")
    local ret
    if typ == "3b" then
        if isFloatColor(input) then
            ret = {r = math.ceil(input.r * 255), g = math.ceil(input.g * 255), b = math.ceil(input.b * 255)}
        else
            ret = {r = input.r, g = input.g, b = input.b}
        end
    elseif typ == "4b" then
        if isFloatColor(input) then
            ret = {r = math.ceil(input.r * 255), g = math.ceil(input.g * 255), b = math.ceil(input.b * 255)}
        else
            ret = {r = input.r, g = input.g, b = input.b}
        end
        if input.a then
            if math.ceil(input.a) ~= input.a or input.a >= 1 then
                ret.a = input.a * 255
            else
                ret.a = input.a
            end
        else
            ret.a = 255
        end
    elseif typ == "4f" then
        if isFloatColor(input) then
            ret = {r = input.r, g = input.g, b = input.b}
        else
            ret = {r = input.r / 255, g = input.g / 255, b = input.b / 255}
        end
        if input.a then
            if math.ceil(input.a) ~= input.a or input.a >= 1 then
                ret.a = input.a
            else
                ret.a = input.a / 255
            end
        else
            ret.a = 255
        end
    else
        error(string.format("cc.convertColor() - invalid type %s", typ), 0)
    end
    return ret
end

--Vertex2F
function cc.vertex2F(_x,_y)
    return { x = _x, y = _y }
end

--Vertex3F
function cc.Vertex3F(_x,_y,_z)
    return { x = _x, y = _y, z = _z }
end

--Tex2F
function cc.tex2F(_u,_v)
    return { u = _u, v = _v }
end

--PointSprite
function cc.PointSprite(_pos,_color,_size)
    return { pos = _pos, color = _color, size = _size }
end

--Quad2
function cc.Quad2(_tl,_tr,_bl,_br)
    return { tl = _tl, tr = _tr, bl = _bl, br = _br }
end

--Quad3
function cc.Quad3(_tl, _tr, _bl, _br)
    return { tl = _tl, tr = _tr, bl = _bl, br = _br }
end

--V2F_C4B_T2F
function cc.V2F_C4B_T2F(_vertices, _colors, _texCoords)
    return { vertices = _vertices, colors = _colors, texCoords = _texCoords }
end

--V2F_C4F_T2F
function cc.V2F_C4F_T2F(_vertices, _colors, _texCoords)
    return { vertices = _vertices, colors = _colors, texCoords = _texCoords }
end

--V3F_C4B_T2F
function cc.V3F_C4B_T2F(_vertices, _colors, _texCoords)
    return { vertices = _vertices, colors = _colors, texCoords = _texCoords }
end

--V2F_C4B_T2F_Quad
function cc.V2F_C4B_T2F_Quad(_bl, _br, _tl, _tr)
    return { bl = _bl, br = _br, tl = _tl, tr = _tr }
end

--V3F_C4B_T2F_Quad
function cc.V3F_C4B_T2F_Quad(_tl, _bl, _tr, _br)
    return { tl = _tl, bl = _bl, tr = _tr, br = _br }
end

--V2F_C4F_T2F_Quad
function cc.V2F_C4F_T2F_Quad(_bl, _br, _tl, _tr)
    return { bl = _bl, br = _br, tl = _tl, tr = _tr }
end

--T2F_Quad
function cc.T2F_Quad(_bl, _br, _tl, _tr)
    return { bl = _bl, br = _br, tl = _tl, tr = _tr }
end

--AnimationFrameData
function cc.AnimationFrameData( _texCoords, _delay, _size)
    return { texCoords = _texCoords, delay = _delay, size = _size }
end

--PhysicsMaterial
function cc.PhysicsMaterial(_density, _restitution, _friction)
	return { density = _density, restitution = _restitution, friction = _friction }
end

function cc.vec3(_x, _y, _z)
    return { x = _x, y = _y, z = _z }
end

function cc.vec4(_x, _y, _z, _w)
    return { x = _x, y = _y, z = _z, w = _w }
end

function cc.vec3normalize(vec3)
    local n = vec3.x * vec3.x + vec3.y * vec3.y + vec3.z * vec3.z
    if n == 1.0 then
        return vec3
    end

    n = math.sqrt(n)

    if n < 2e-37 then
        return vec3
    end

    n = 1.0 / n
    return {x = vec3.x * n, y = vec3.y * n, z = vec3.z * n}
end

function cc.quaternion(_x, _y ,_z,_w)
    return { x = _x, y = _y, z = _z, w = _w }
end

function cc.quaternion_createFromAxisAngle(axis, angle)

    local  halfAngle = angle * 0.5
    local  sinHalfAngle = math.sin(halfAngle)

    local normal = cc.vec3(axis.x, axis.y, axis.z)
    normal = cc.vec3normalize(normal)
    local dst = cc.vec3(0.0, 0.0, 0.0)
    dst.x = normal.x * sinHalfAngle
    dst.y = normal.y * sinHalfAngle
    dst.z = normal.z * sinHalfAngle
    dst.w = math.cos(halfAngle)

    return dst
end

function cc.blendFunc(_src, _dst)
    return {src = _src, dst = _dst}
end

cc.mat4 = cc.mat4 or {}

function cc.mat4.new(...)
    local params = {...}
    local size   = #params
    local obj = {}

    if 1 == size then
        assert(type(params[1]) == "table" , "type of input params are wrong to new a mat4 when num of params is 1")
        for i= 1, 16 do
            if params[1][i] ~= nil then
                obj[i] = params[1][i]
            else
                obj[i] = 0
            end
        end
    elseif 16 == size then
        for i= 1, 16 do
            obj[i] = params[i]
        end
    end

    setmetatable(obj, {__index = cc.mat4})

    return obj
end

function cc.mat4.getInversed(self)
    return mat4_getInversed(self)
end

function cc.mat4.transformVector(self, vector, dst)
    return mat4_transformVector(self, vector, dst)
end

function cc.mat4.multiply(self, mat)
    return mat4_multiply(self, mat)
end

function cc.mat4.decompose(self, scale, rotation, translation)
    return mat4_decompose(self, scale ,rotation, translation)
end

function cc.mat4.createIdentity()
    return cc.mat4.new(1.0 ,0.0, 0.0, 0.0,
                       0.0, 1.0, 0.0, 0.0,
                       0.0, 0.0, 1.0, 0.0,
                       0.0, 0.0, 0.0, 1.0)
end

function cc.mat4.createTranslation(translation, dst)
    assert(type(translation) == "table" and type(dst) == "table", "The type of input parameters should be table")
    dst = cc.mat4.createIdentity()
    dst[13] = translation.x
    dst[14] = translation.y
    dst[15] = translation.z
    return dst
end

function cc.mat4.createRotation(q, dst)
    assert(type(q) == "table" and type(dst) == "table", "The type of input parameters should be table")
    local x2 = q.x + q.x
    local y2 = q.y + q.y
    local z2 = q.z + q.z

    local xx2 = q.x * x2
    local yy2 = q.y * y2
    local zz2 = q.z * z2
    local xy2 = q.x * y2
    local xz2 = q.x * z2
    local yz2 = q.y * z2
    local wx2 = q.w * x2
    local wy2 = q.w * y2
    local wz2 = q.w * z2

    dst[1] = 1.0 - yy2 - zz2
    dst[2] = xy2 + wz2
    dst[3] = xz2 - wy2
    dst[4] = 0.0

    dst[5] = xy2 - wz2
    dst[6] = 1.0 - xx2 - zz2
    dst[7] = yz2 + wx2
    dst[8] = 0.0

    dst[9] = xz2 + wy2
    dst[10] = yz2 - wx2
    dst[11] = 1.0 - xx2 - yy2
    dst[12] = 0.0

    dst[13] = 0.0
    dst[14] = 0.0
    dst[15] = 0.0
    dst[16] = 1.0

    return dst
end