Cocos2d.lua
13.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
cc = cc or {}
function cc.clampf(value, min_inclusive, max_inclusive)
-- body
local temp = 0
if min_inclusive > max_inclusive then
temp = min_inclusive
min_inclusive = max_inclusive
max_inclusive = temp
end
if value < min_inclusive then
return min_inclusive
elseif value < max_inclusive then
return value
else
return max_inclusive
end
end
--Point
function cc.p(_x,_y)
if nil == _y then
return { x = _x.x, y = _x.y }
else
return { x = _x, y = _y }
end
end
function cc.pAdd(pt1,pt2)
return {x = pt1.x + pt2.x , y = pt1.y + pt2.y }
end
function cc.pSub(pt1,pt2)
return {x = pt1.x - pt2.x , y = pt1.y - pt2.y }
end
function cc.pMul(pt1,factor)
return { x = pt1.x * factor , y = pt1.y * factor }
end
function cc.pMidpoint(pt1,pt2)
return { x = (pt1.x + pt2.x) / 2.0 , y = ( pt1.y + pt2.y) / 2.0 }
end
function cc.pForAngle(a)
return { x = math.cos(a), y = math.sin(a) }
end
function cc.pGetLength(pt)
return math.sqrt( pt.x * pt.x + pt.y * pt.y )
end
function cc.pNormalize(pt)
local length = cc.pGetLength(pt)
if 0 == length then
return { x = 1.0,y = 0.0 }
end
return { x = pt.x / length, y = pt.y / length }
end
function cc.pCross(self,other)
return self.x * other.y - self.y * other.x
end
function cc.pDot(self,other)
return self.x * other.x + self.y * other.y
end
function cc.pToAngleSelf(self)
return math.atan2(self.y, self.x)
end
function cc.pGetAngle(self,other)
local a2 = cc.pNormalize(self)
local b2 = cc.pNormalize(other)
local angle = math.atan2(cc.pCross(a2, b2), cc.pDot(a2, b2) )
if math.abs(angle) < 1.192092896e-7 then
return 0.0
end
return angle
end
function cc.pGetDistance(startP,endP)
return cc.pGetLength(cc.pSub(startP,endP))
end
function cc.pIsLineIntersect(A, B, C, D, s, t)
if ((A.x == B.x) and (A.y == B.y)) or ((C.x == D.x) and (C.y == D.y))then
return false, s, t
end
local BAx = B.x - A.x
local BAy = B.y - A.y
local DCx = D.x - C.x
local DCy = D.y - C.y
local ACx = A.x - C.x
local ACy = A.y - C.y
local denom = DCy * BAx - DCx * BAy
s = DCx * ACy - DCy * ACx
t = BAx * ACy - BAy * ACx
if (denom == 0) then
if (s == 0 or t == 0) then
return true, s , t
end
return false, s, t
end
s = s / denom
t = t / denom
return true,s,t
end
function cc.pPerp(pt)
return { x = -pt.y, y = pt.x }
end
function cc.RPerp(pt)
return { x = pt.y, y = -pt.x }
end
function cc.pProject(pt1, pt2)
return { x = pt2.x * (cc.pDot(pt1,pt2) / cc.pDot(pt2,pt2)) , y = pt2.y * (cc.pDot(pt1,pt2) / cc.pDot(pt2,pt2)) }
end
function cc.pRotate(pt1, pt2)
return { x = pt1.x * pt2.x - pt1.y * pt2.y, y = pt1.x * pt2.y + pt1.y * pt2.x }
end
function cc.pUnrotate(pt1, pt2)
return { x = pt1.x * pt2.x + pt1.y * pt2.y, pt1.y * pt2.x - pt1.x * pt2.y }
end
--Calculates the square length of pt
function cc.pLengthSQ(pt)
return cc.pDot(pt,pt)
end
--Calculates the square distance between pt1 and pt2
function cc.pDistanceSQ(pt1,pt2)
return cc.pLengthSQ(cc.pSub(pt1,pt2))
end
function cc.pGetClampPoint(pt1,pt2,pt3)
return { x = cc.clampf(pt1.x, pt2.x, pt3.x), y = cc.clampf(pt1.y, pt2.y, pt3.y) }
end
function cc.pFromSize(sz)
return { x = sz.width, y = sz.height }
end
function cc.pLerp(pt1,pt2,alpha)
return cc.pAdd(cc.pMul(pt1, 1.0 - alpha), cc.pMul(pt2,alpha) )
end
function cc.pFuzzyEqual(pt1,pt2,variance)
if (pt1.x - variance <= pt2.x) and (pt2.x <= pt1.x + variance) and (pt1.y - variance <= pt2.y) and (pt2.y <= pt1.y + variance) then
return true
else
return false
end
end
function cc.pRotateByAngle(pt1, pt2, angle)
return cc.pAdd(pt2, cc.pRotate( cc.pSub(pt1, pt2),cc.pForAngle(angle)))
end
function cc.pIsSegmentIntersect(pt1,pt2,pt3,pt4)
local s,t,ret = 0,0,false
ret,s,t =cc.pIsLineIntersect(pt1, pt2, pt3, pt4,s,t)
if ret and s >= 0.0 and s <= 1.0 and t >= 0.0 and t <= 0.0 then
return true
end
return false
end
function cc.pGetIntersectPoint(pt1,pt2,pt3,pt4)
local s,t, ret = 0,0,false
ret,s,t = cc.pIsLineIntersect(pt1,pt2,pt3,pt4,s,t)
if ret then
return cc.p(pt1.x + s * (pt2.x - pt1.x), pt1.y + s * (pt2.y - pt1.y))
else
return cc.p(0,0)
end
end
--Size
function cc.size( _width,_height )
return { width = _width, height = _height }
end
--Rect
function cc.rect(_x,_y,_width,_height)
return { x = _x, y = _y, width = _width, height = _height }
end
function cc.rectEqualToRect(rect1,rect2)
if ((rect1.x >= rect2.x) or (rect1.y >= rect2.y) or
( rect1.x + rect1.width <= rect2.x + rect2.width) or
( rect1.y + rect1.height <= rect2.y + rect2.height)) then
return false
end
return true
end
function cc.rectGetMaxX(rect)
return rect.x + rect.width
end
function cc.rectGetMidX(rect)
return rect.x + rect.width / 2.0
end
function cc.rectGetMinX(rect)
return rect.x
end
function cc.rectGetMaxY(rect)
return rect.y + rect.height
end
function cc.rectGetMidY(rect)
return rect.y + rect.height / 2.0
end
function cc.rectGetMinY(rect)
return rect.y
end
function cc.rectContainsPoint( rect, point )
local ret = false
if (point.x >= rect.x) and (point.x <= rect.x + rect.width) and
(point.y >= rect.y) and (point.y <= rect.y + rect.height) then
ret = true
end
return ret
end
function cc.rectIntersectsRect( rect1, rect2 )
local intersect = not ( rect1.x > rect2.x + rect2.width or
rect1.x + rect1.width < rect2.x or
rect1.y > rect2.y + rect2.height or
rect1.y + rect1.height < rect2.y )
return intersect
end
function cc.rectUnion( rect1, rect2 )
local rect = cc.rect(0, 0, 0, 0)
rect.x = math.min(rect1.x, rect2.x)
rect.y = math.min(rect1.y, rect2.y)
rect.width = math.max(rect1.x + rect1.width, rect2.x + rect2.width) - rect.x
rect.height = math.max(rect1.y + rect1.height, rect2.y + rect2.height) - rect.y
return rect
end
function cc.rectIntersection( rect1, rect2 )
local intersection = cc.rect(
math.max(rect1.x, rect2.x),
math.max(rect1.y, rect2.y),
0, 0)
intersection.width = math.min(rect1.x + rect1.width, rect2.x + rect2.width) - intersection.x
intersection.height = math.min(rect1.y + rect1.height, rect2.y + rect2.height) - intersection.y
return intersection
end
--Color3B
function cc.c3b( _r,_g,_b )
return { r = _r, g = _g, b = _b }
end
--Color4B
function cc.c4b( _r,_g,_b,_a )
return { r = _r, g = _g, b = _b, a = _a }
end
--Color4F
function cc.c4f( _r,_g,_b,_a )
return { r = _r, g = _g, b = _b, a = _a }
end
local function isFloatColor(c)
return (c.r <= 1 and c.g <= 1 and c.b <= 1) and (math.ceil(c.r) ~= c.r or math.ceil(c.g) ~= c.g or math.ceil(c.b) ~= c.b)
end
function cc.convertColor(input, typ)
assert(type(input) == "table" and input.r and input.g and input.b, "cc.convertColor() - invalid input color")
local ret
if typ == "3b" then
if isFloatColor(input) then
ret = {r = math.ceil(input.r * 255), g = math.ceil(input.g * 255), b = math.ceil(input.b * 255)}
else
ret = {r = input.r, g = input.g, b = input.b}
end
elseif typ == "4b" then
if isFloatColor(input) then
ret = {r = math.ceil(input.r * 255), g = math.ceil(input.g * 255), b = math.ceil(input.b * 255)}
else
ret = {r = input.r, g = input.g, b = input.b}
end
if input.a then
if math.ceil(input.a) ~= input.a or input.a >= 1 then
ret.a = input.a * 255
else
ret.a = input.a
end
else
ret.a = 255
end
elseif typ == "4f" then
if isFloatColor(input) then
ret = {r = input.r, g = input.g, b = input.b}
else
ret = {r = input.r / 255, g = input.g / 255, b = input.b / 255}
end
if input.a then
if math.ceil(input.a) ~= input.a or input.a >= 1 then
ret.a = input.a
else
ret.a = input.a / 255
end
else
ret.a = 255
end
else
error(string.format("cc.convertColor() - invalid type %s", typ), 0)
end
return ret
end
--Vertex2F
function cc.vertex2F(_x,_y)
return { x = _x, y = _y }
end
--Vertex3F
function cc.Vertex3F(_x,_y,_z)
return { x = _x, y = _y, z = _z }
end
--Tex2F
function cc.tex2F(_u,_v)
return { u = _u, v = _v }
end
--PointSprite
function cc.PointSprite(_pos,_color,_size)
return { pos = _pos, color = _color, size = _size }
end
--Quad2
function cc.Quad2(_tl,_tr,_bl,_br)
return { tl = _tl, tr = _tr, bl = _bl, br = _br }
end
--Quad3
function cc.Quad3(_tl, _tr, _bl, _br)
return { tl = _tl, tr = _tr, bl = _bl, br = _br }
end
--V2F_C4B_T2F
function cc.V2F_C4B_T2F(_vertices, _colors, _texCoords)
return { vertices = _vertices, colors = _colors, texCoords = _texCoords }
end
--V2F_C4F_T2F
function cc.V2F_C4F_T2F(_vertices, _colors, _texCoords)
return { vertices = _vertices, colors = _colors, texCoords = _texCoords }
end
--V3F_C4B_T2F
function cc.V3F_C4B_T2F(_vertices, _colors, _texCoords)
return { vertices = _vertices, colors = _colors, texCoords = _texCoords }
end
--V2F_C4B_T2F_Quad
function cc.V2F_C4B_T2F_Quad(_bl, _br, _tl, _tr)
return { bl = _bl, br = _br, tl = _tl, tr = _tr }
end
--V3F_C4B_T2F_Quad
function cc.V3F_C4B_T2F_Quad(_tl, _bl, _tr, _br)
return { tl = _tl, bl = _bl, tr = _tr, br = _br }
end
--V2F_C4F_T2F_Quad
function cc.V2F_C4F_T2F_Quad(_bl, _br, _tl, _tr)
return { bl = _bl, br = _br, tl = _tl, tr = _tr }
end
--T2F_Quad
function cc.T2F_Quad(_bl, _br, _tl, _tr)
return { bl = _bl, br = _br, tl = _tl, tr = _tr }
end
--AnimationFrameData
function cc.AnimationFrameData( _texCoords, _delay, _size)
return { texCoords = _texCoords, delay = _delay, size = _size }
end
--PhysicsMaterial
function cc.PhysicsMaterial(_density, _restitution, _friction)
return { density = _density, restitution = _restitution, friction = _friction }
end
function cc.vec3(_x, _y, _z)
return { x = _x, y = _y, z = _z }
end
function cc.vec4(_x, _y, _z, _w)
return { x = _x, y = _y, z = _z, w = _w }
end
function cc.vec3normalize(vec3)
local n = vec3.x * vec3.x + vec3.y * vec3.y + vec3.z * vec3.z
if n == 1.0 then
return vec3
end
n = math.sqrt(n)
if n < 2e-37 then
return vec3
end
n = 1.0 / n
return {x = vec3.x * n, y = vec3.y * n, z = vec3.z * n}
end
function cc.quaternion(_x, _y ,_z,_w)
return { x = _x, y = _y, z = _z, w = _w }
end
function cc.quaternion_createFromAxisAngle(axis, angle)
local halfAngle = angle * 0.5
local sinHalfAngle = math.sin(halfAngle)
local normal = cc.vec3(axis.x, axis.y, axis.z)
normal = cc.vec3normalize(normal)
local dst = cc.vec3(0.0, 0.0, 0.0)
dst.x = normal.x * sinHalfAngle
dst.y = normal.y * sinHalfAngle
dst.z = normal.z * sinHalfAngle
dst.w = math.cos(halfAngle)
return dst
end
function cc.blendFunc(_src, _dst)
return {src = _src, dst = _dst}
end
cc.mat4 = cc.mat4 or {}
function cc.mat4.new(...)
local params = {...}
local size = #params
local obj = {}
if 1 == size then
assert(type(params[1]) == "table" , "type of input params are wrong to new a mat4 when num of params is 1")
for i= 1, 16 do
if params[1][i] ~= nil then
obj[i] = params[1][i]
else
obj[i] = 0
end
end
elseif 16 == size then
for i= 1, 16 do
obj[i] = params[i]
end
end
setmetatable(obj, {__index = cc.mat4})
return obj
end
function cc.mat4.getInversed(self)
return mat4_getInversed(self)
end
function cc.mat4.transformVector(self, vector, dst)
return mat4_transformVector(self, vector, dst)
end
function cc.mat4.multiply(self, mat)
return mat4_multiply(self, mat)
end
function cc.mat4.decompose(self, scale, rotation, translation)
return mat4_decompose(self, scale ,rotation, translation)
end
function cc.mat4.createIdentity()
return cc.mat4.new(1.0 ,0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0)
end
function cc.mat4.createTranslation(translation, dst)
assert(type(translation) == "table" and type(dst) == "table", "The type of input parameters should be table")
dst = cc.mat4.createIdentity()
dst[13] = translation.x
dst[14] = translation.y
dst[15] = translation.z
return dst
end
function cc.mat4.createRotation(q, dst)
assert(type(q) == "table" and type(dst) == "table", "The type of input parameters should be table")
local x2 = q.x + q.x
local y2 = q.y + q.y
local z2 = q.z + q.z
local xx2 = q.x * x2
local yy2 = q.y * y2
local zz2 = q.z * z2
local xy2 = q.x * y2
local xz2 = q.x * z2
local yz2 = q.y * z2
local wx2 = q.w * x2
local wy2 = q.w * y2
local wz2 = q.w * z2
dst[1] = 1.0 - yy2 - zz2
dst[2] = xy2 + wz2
dst[3] = xz2 - wy2
dst[4] = 0.0
dst[5] = xy2 - wz2
dst[6] = 1.0 - xx2 - zz2
dst[7] = yz2 + wx2
dst[8] = 0.0
dst[9] = xz2 + wy2
dst[10] = yz2 - wx2
dst[11] = 1.0 - xx2 - yy2
dst[12] = 0.0
dst[13] = 0.0
dst[14] = 0.0
dst[15] = 0.0
dst[16] = 1.0
return dst
end